在K-means聚类算法中,首先需要预定义簇的数量K,然后随机选择K个对象作为初始的聚类中心。接着,算法会遍历数据集中的每个对象,根据对象与各个聚类中心的距离,将每个对象分配给距离它最近的聚类中心。完成一轮分配后,算法会重新计算每个簇的聚类中心,新的聚类中心是该簇所有对象的均值。这个过程会不断重复,直到满足某个...
本算法基于泊松分布和K-means聚类,通过分析点云数据的空间分布特性,实现精简目标。具体步骤如下: 1.数据预处理:对原始点云数据进行预处理,包括去除噪声、补全缺失数据等操作。 2.泊松分布建模:根据点云数据的空间分布特性,建立泊松分布模型。通过计算每个区域内点的密度,得到泊松分布的参数。 3. K-means聚类:根据泊...
首先,对点云进行K-means聚类获取对象基元并计算质心点,判断各对象基元质心点是否满足角度和高差阈值,实现基于对象基元质心点的点云滤波;然后,遍历地物对象基元,通过计算对象基元内各点的邻近点的法向量角度和距离,判断其是否满足阈值生长条...
内容提示: 第56卷 第9期激光与光电子学进展Vol.56,No.92019年5月Laser&OptoelectronicsProgressMay,2019基于 k-means聚类的点云精简方法贺一波1* ,陈冉丽 2 ,吴侃 3 ,段志鑫 31 大同煤炭职业技术学院建筑工程系,山西 大同037003;2 石家庄铁路职业技术学院测绘工程系,河北 石家庄050041;3 中国矿业大学环境与...
通过比较三维点云传来的二维坐标是否在物体边界框内,可以在GPU中实现高速的三维物体识别功能。在点云上进行k-means聚类,提高了聚类的精度和精度。该检测方法的速度比PointNet快。 ●主要贡献 CVPR2017提出的PointNet是一篇具有里程碑意义文章,标志着点云处理进入了一个新的阶段。原因是在PointNet之前,我们没有办法直接...
from sklearn.cluster import KMeans #sklearn自带的Kmeans算法, 用于严重本文算法结果是否正确 import matplotlib.pyplot as plt #结果可视化 import sys #需要用到sys.exit()函数 1. 2. 3. 4. 如果你不需要验证聚类结果可以不使用Sklearn库 生成用于训练的随机数据 ...
摘要提出采用K-means聚类分析方法对三维点云模型进行分割。论文指出,对于分布呈现类内团聚状三维点云模型,K均值聚类分割可以得到较好的结果。与三维网格模型的K均值聚类分割、点云模型的谱系聚类分割的实验结果比较证实了这一点。关键词三维模型分割聚类分割三维点云模型K均值聚类 文章编号1002-8331-(...
融合k-means聚类和Hausdorff距离的散乱点云精简算法.docx,为了提高点云数据处理和应用的效率,需要对海量点云数据进行精简[1-4]。近年来,国内外学者对点云精简进行了大量研究,并取得了大量的研究成果。经典的点云算法有包围盒法[5]、曲率采样[6]、保留边界法[7]、聚类法等
使用 K-D 树快速分类点云;通过曲率估计算法得到局部曲面的曲率值; 使用 K-means 聚类算法对点云进行聚类,对每个类中的点,根据点到聚类中心的欧式距离和邻近点 曲率变化判断是否为噪声点;通过保持特征的点云精简算法实现对点云数据的简化.实验结果显示, 算法快速有效,对于去除大量外部噪声有良好效果,且精简后的点...
针对kinect等深度相机扫描获取的点云数据数量庞大,噪声较多的问题,提出一种特征保持的点云云噪和精简算法.使用K-D树快速分类点云;通过曲率估计算法得到局部曲面的曲率值;使用K—means聚类算法对点云进行聚类,对每个类中的点,根据点到聚类中心的欧式距离和邻近点曲率变化判断是否为噪声点;通过保持特征的点云精简算法实...