4. 强化学习 5. 其它 在线学习中心课程深度学习理论与实战:提高篇 5分钟 1.1.4 语音识别效果评测 语音识别的效果通常使用词错误率(Word Error Rate/WER)来评测。每段语音都会有一个正确的文本,语音识别系统也会输出一段文字,我们可以使用编辑距离的算法来计算三种错误:替换错误S , 删除错误D 和插入错误I,然后WE...
因此把这本书拆分成了两本:《深度学习理论与实战:基础篇》和《深度学习理论与实战:提高篇》。基础篇已经在编辑出版中,预计年中可以和读者见面。提高篇则更加专业,不同的人可能只关注不同的方向,为了小部分内容而购买整本书似乎不合算。所以作者把提高篇免费开放出来,希望对读者的学习和工作有所裨益。本文会持续...
本文节选自《深度学习理论与实战:提高篇 》一书,原文链接http://fancyerii.github.io/2019/03/14/dl-book/ 。作者李理,环信人工智能研发中心vp,有十多年自然语言处理和人工智能研发经验,主持研发过多款智能硬件的问答和对话系统,负责环信中文语义分析开放平台和环信智能机器人的设计与研发。 HMM模型在语音识别系统中...
本文节选自《深度学习理论与实战:提高篇 》一书,原文链接http://fancyerii.github.io/2019/03/14/dl-book/ 。作者李理,环信人工智能研发中心vp,有十多年自然语言处理和人工智能研发经验,主持研发过多款智能硬件的问答和对话系统,负责环信中文语义分析开放平台和环信智能机器人的设计与研发。 本文介绍蒙特卡罗方法,详...
R-CNN R-CNN是“Region-based Convolutional Neural Networks”的缩写,这里是原论文。它包括三个部分:生成物体类别无关的Region proposal的模块。这里没有任何神经网络,它使用图像处理的技术产生可能包含物体的候选区域一个CNN来提取固定大小的特征。这个CNN只是用来提取特征。每个类别都有一个线性的SVM分类器来判断...
即使到了今天,End-to-End的语音识别系统不断出现,在工业界很多主流的系统仍然还是在使用基于HMM模型的方法,当然很多情况引入了深度神经网络用来替代传统的GMM模型。因此我们首先来了解一些经典的基于HMM模型的语音识别系统。 语音产生过程 语音的激励来自于肺呼出的气体,声门的不断开启和闭合会产生周期的信号,这个信号的...
因此把这本书拆分成了两本:《深度学习理论与实战:基础篇》和《深度学习理论与实战:提高篇》。基础篇已经在编辑出版中,预计年中可以和读者见面。提高篇则更加专业,不同的人可能只关注不同的方向,为了小部分内容而购买整本书似乎不合算。所以作者把提高篇免费开放出来,希望对读者的学习和工作有所裨益。本文会持续...
编者按:本文节选自《深度学习理论与实战:提高篇 》一书,原文链接http://fancyerii.github.io/2019/03/14/dl-book/。作者李理,环信人工智能研发中心vp,有十多年自然语言处理和人工智能研发经验,主持研发过多款智能硬件的问答和对话系统,负责环信中文语义分析开放平台和环信智能机器人的设计与研发。 以下为正文。 目录...
接下来我们讨论一种Off-Policy的TD学习算法Q-Learning,这是非常流行的一种算法,后面我们介绍深度学习和强化学习的结合时就会介绍Deep Q-Learning。我们知道Off-Policy有两个策略——目标策略和行为策略。对于Q-Learning来说也是有两个策略的,但是和之前的Off-Policy不同,Q-Learning的两个策略都是依赖与同一个Q函数,...
编者按:本文节选自《深度学习理论与实战:提高篇 》一书,原文链接http://fancyerii.github.io/2019/03/14/dl-book/ 。作者李理,环信人工智能研发中心vp,有十多年自然语言处理和人工智能研发经验,主持研发过多款智能硬件的问答和对话系统,负责环信中文语义分析开放平台和环信智能机器人的设计与研发。