尽管到目前为止深度学习在图像识别方面已经取得了巨大成功,但在它进一步广泛应用之前,仍然有很多挑战需要我们去面对。与此同时,我们也看到了很多具有未来价值的研究方向。 挑战一:如何提高模型的泛化能力 图像识别技术在可以被广泛应用之前,一个重要的挑战是,怎样才能知道一个模型对未曾出现过的场景仍然具有很好的泛化能力。
尽管在图像识别领域存在上述诸多挑战,但我们仍然相信深度学习在图像识别领域的巨大潜力。解决这些问题的机会比比皆是,下面我们看看这其中的几个研究方向: 方向一:整合常识 图像识别领域有一个重要的研究方向是将常识融入到深度学习中。目前,深度学习主要作为一种纯粹的数据驱动技术被使用。在深度学习中,神经网络利用训练集...
尽管在图像识别领域存在上述诸多挑战,但我们仍然相信深度学习在图像识别领域的巨大潜力。解决这些问题的机会比比皆是,下面我们看看这其中的几个研究方向: 方向一:整合常识 图像识别领域有一个重要的研究方向是将常识融入到深度学习中。目前,深度学习主要作为一种纯粹的数据驱动技术被使用。在深度学习中,神经网络利用训练集...
尽管在图像识别领域存在上述诸多挑战,但我们仍然相信深度学习在图像识别领域的巨大潜力。解决这些问题的机会比比皆是,下面我们看看这其中的几个研究方向: 方向一:整合常识 图像识别领域有一个重要的研究方向是将常识融入到深度学习中。目前,深度学习主要作为一种纯粹的数据驱动技术被使用。在深度学习中,神经网络利用训练集...