1、没有Batch Size,梯度准确,只适用于小样本数据库 2、Batch Size=1,梯度变来变去,非常不准确,网络很难收敛。 3、Batch Size增大,梯度变准确, 4、Batch Size增大,梯度已经非常准确,再增加Batch Size也没有用 注意:Batch Size增大了,要到达相同的准确度,必须要增大epoch。 GD(Gradient Descent):就是没有利用...
深度学习中Epoch、Batch以及Batch size的设定 Epoch(时期): 当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次>epoch。(也就是说,所有训练样本在神经网络中都 进行了一次正向传播 和一次反向传播 ) 再通俗一点,一个Epoch就是将所有训练样本训练一次的过程。 然而,当一个Epoch的样本(也就是所有...