可以利用公式:E(XY)=∑i*j*(Pij),其中i为X的取值,j为Y的取值,Pij为对应于X=i,Y=j的联合分布列中的相应概率,求和是对所有的i,j求和。从而E(XY)=∑i*j*(Pij)中只要当X,或者Y取0时,相应的项都为0。进而:E(XY)=1*1*0.06+1*2*0.07+1*3*0.04+2*1*0.07+2*2*0....
E(XY)是一个固定值吧,不会有最大值之说。(X,Y)∼N(μ1,μ2,σ12,σ22,ρ)因为:Cov(X...
综上,可以写出f(x,y),然后对其积分求E(XY)。最终得到E(XY)和上面μ1,μ2,σ1,σ2,r五...
正态分布ex-y的计算公式是:P(x)=(2π)(-1/2)*σ(-1)*exp{[-(x-μ)2]/(2σ2)}。其中?F(y)为Y的分布函数,F(x)为X的分布函数。正态分布函数的特征:集中性:正态曲线的高峰位于正中央,即均数所在的位置。对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。均匀...
设X服从N(m, c^2),即 知道m=E(X),c^2=D(X)。知道Y=aX+b 也服从正态分布。且由于E(Y)=E(aX+b)=am+b,D(Y)=D(aX+b)=(a^2)*(c^2)即 知道Y服从N(am+b, (a*c)^2 )。
二维正态分布(x,y)~N(u1,u2,s1,s2,r),其中r=R(x,y)=cov(x,y)=1/2 E(X)=5*0.1=0.5,D(X)=5*0.1*0.9=0.45 E(Y)=1,D(Y)=4;E(X-2Y)=E(X)-2E(Y)=0.5-2=-1.5 D(X-2Y)=D(X)+4D(Y)=0.45+4*4=16.45 E((X+Y)²)=E(X²+Y²...
X~N(0,4)数学期望E(X)=0,方差D(X)=4;Y~N(2,3/4)数学期望E(Y)=2,方差D(Y)=4/3。由X,Y相互独立得:E(XY)=E(X)E(Y)=0×2=0,D(X+Y)=D(X)+D(Y)=4×4/3=16/3,D(2X-3Y)=2²D(X)-3²D(Y)=4×4-9×4...
//: X,Y独立:E[XY]=0,4) D(η)=E[η-E(η)]²=E[X²-2XY+Y²]=D(X)+D(Y)=1+1=2; //: X,Y独立:E[XY]=0,5)ρξη=cov(ξ,η)/[D(ξ)D(η)]^0.5=0; //: 由于X,Y独立,ξ,η也独立,其协方差为0,所以相关系 数:ρξη=0....
对于标准正态分布μ=0,σ=1,那么E(x)=e12 刚刚其实我们算出了y=ex的期望,那么原本的x的期望也...