正态分布相乘的期望和方差 正态分布的期望和方差数学期望反映随机变量平均取值的大小。方差为各个数据与平均数之差的平方的和的平均数,即其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s²就表示方差©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
如果 U 与 V 是期望值为 0、方差为 1 的两个独立正态分布随机变量的话,那么比值 U/V 为柯西分布,相乘是联合正态分布。
两个正态分布相乘的期望和方差 由于X与e独立,所以E(X|Y)=E(X|X+e)=E(X|X)=X,Var(X|Y)=Var(X|X+e)=Var(X|X)=E(X^2|X)-(E(X|X))^2=(X^2)-X^2=0 如果只知道Z=X+Y的分布,而没有其他任何关于X和Y的先验信息,是无法确定X和Y的分布的,例如:若Z~N(0,d^2),X和Y都是有无穷...