倒谱分析已经将两部分对应的时域信号的卷积关系转化为了线性加关系,所以只需要将倒谱通过一个低通滤波器即可获得包络部分对应的时域信号h’(t)。 梅尔频率倒谱系数MFCC 通常,计算MFCC之前,还会通过预加重、分帧和加窗、短时FFT等手段将原始原始声音信号的spectrogram声谱图,MFCC对声谱信号进行分析。 提取MFCC特征的过程:...
对对数梅尔频谱进行DCT,得到梅尔频率倒谱系数(MFCC)。DCT的目的是将频谱压缩到更少的系数,并去除相关性。 保留低阶系数: 通常保留前12到13个系数,因为低阶系数包含了主要的频谱信息,高阶系数往往与噪声有关。 3. 应用 语音识别:MFCC是语音识别系统中的常用特征,因为它能够有效捕捉语音信号中的重要信息。 音乐信息...
一MFCC简介MFCC,梅尔倒谱系数,是一种语音特征。梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)是在Mel标度频率域提取出来的倒谱参数,Mel标度描述了人耳频率的非线性特性,它与频率的关系可用下式近似表示: 式中f为频率,单位为Hz。下图展示了Mel频率与线性频率的关系: 二、语音特征参数MFCC提取过程可...
梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient, MFCC)考虑到了人类的听觉特征,先将线性频谱映射到基于听觉感知的Mel非线性频谱中,然后转换到倒谱上。 在Mel频域内,人对音调的感知度为线性关系。举例来说,如果两段语音的Mel频率相差两倍,则人耳听起来两者的音调也相差两倍。
一、MFCC的定义 梅尔频率倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)是在Mel标度频率域提取出来的倒谱参数。它衍生自音讯片段的倒频谱(cepstrum)。倒谱和梅尔频率倒谱的区别在于,梅尔频率倒谱的频带划分是在梅尔刻度上等距划分的,它比用于正常的对数倒频谱中的线性间隔的频带更能近似人类的听觉系统。Mel...
梅尔频率倒谱系数(MFCC)广泛被应用于语音识别的功能。他们由Davis和Mermelstein在1980年代提出,并在其后持续是最先进的技术之一。在MFCC之前,线性预测系数(LPCS)和线性预测倒谱系数(LPCCs)是自动语音识别的的主流方法。 MFCC通常有以下之过程: 将一段语音信号分解为多个讯框。 将语音信号预强化,通过一个高通滤波器。
1.梅尔频率倒谱系数(MFCC)原理 梅尔频率倒谱系数(MFCC)是一种将音频信号转换成一组特征向量的算法,其主要思想是利用人类听觉系统的特性,把信号中的音高和音色信息分离出来,并转换成一组更易于处理和区分的特征向量。其基本流程如下: (1)预处理 首先,对输入的音频信号进行预处理操作。常见的预处理方法有加窗、去噪...
机器学习语音处理:滤波器组、梅尔频率倒谱系数 (MFCC) 以及介于两者之间的内容 语音处理在任何语音系统中都起着重要作用,无论是自动语音识别(ASR)还是说话人识别或其他东西。长期以来,梅尔频率倒谱系数 (MFCC) 是非常流行的特征;但最近,过滤器库变得越来越受欢迎。本文将讨论过滤器组和MFCC,以及为什么过滤器组越来越...
梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient, MFCC)考虑到了人类的听觉特征,先将线性频谱映射到基于听觉感知的Mel非线性频谱中,然后转换到倒谱上。 将普通频率转化到Mel频率的公式是: 由下图可以看到,它可以将不统一的频率转化为统一的频率,也就是统一的滤波器组。