积分过程为 令x = sinθ,则dx = cosθ dθ ∫√(1-x²)dx =∫√(1-sin²θ)(cosθ dθ)=∫cos²θdθ =∫(1+cos2θ)/2dθ =θ/2+(sin2θ)/4+C =(arcsinx)/2+(sinθcosθ)/2 + C =(arcsinx)/2+(x√(1 - x²))/2+C =(1/2)[arcsinx...
∫√(x^2-1)dx=∫(tant)^2sectdt =1/2[ln(sect+tant)+ secttant]由x=sect,得tant=√(x^2-1)= 1/2[ln(x+√(x^2-1))+ x√(x^2-1)]
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。 若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。 参考资料...
1)∫x/√(x²-1) dx =∫(x²-1)^(-1/2)d(x²)=2√(x²-1)+C 2)∫1/[x√(x²-1)]dx 令x=secu 则dx=secu tanu du 原式=∫1/[secu tanu]* secu*tanudu =∫du =u+C =arccos(1/x)+C,16,很简单,用dx∧2=2xdx代换一下就变成反三角函...
由x=sect,得tant=√(x^2-1) = 1/2[ln(x+√(x^2-1))+ x√(x^2-1)] 扩展资料 根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。 一个函数,可以存...
求根号下(x^2+4)分之一的定积分,积分上下限[0,1],谢谢 我来答 首页 用户 认证用户 帮帮团 认证团队 合伙人 热推榜单 企业 媒体 政府 其他组织 商城 法律 手机答题 我的 求根号下(x^2+4)分之一的定积分,积分上下限[0,1],谢谢 5 我来答 ...
简单计算一下即可,答案如图所示
这一种的定积分是找不到原函数的那种,考虑定积分的定义就行了,因为y=根号下1-x平方,就是x和y的平方和是1,同时y非负,就是和单位圆在x轴上方的部分,如果积分区间是-1到1,按定积分的意义就是半圆的面积
供参考:
根号下 (1 + x^2) 分之一的积分可以表示为:∫(1/√(1 + x^2)) dx 这是一个常见的积分形式,也被称为反正弦积分。为了求解这个积分,可以进行变量替换。令 x = tanθ,其中 θ 是一个新的变量。则 dx = sec^2θ dθ,并且 1 + x^2 = 1 + tan^2θ = sec^2θ。将这些替换...