有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程).有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精...
历史背景 1.有限差分法(FDM)一维计算 2.有限元法(FEM)一维计算 程序实现 讨论有限差分法(FDM)、有限元法(FEM)和有限体积法(FVM)的基本理论和算法。收藏于计算流体力学专栏,本专栏涵盖流体和传热的计算方法、基本理论、程序和应用。有限差分法(FDM)和有限元法(FEM)的基本原理,网格生成、自适应方法和计算技术,...
有限差分法是一种将偏微分方程中的导数用差分近似表示的方法,将求解区域离散化为有限个网格点,通过差分方程求解得到每个网格点的解,从而得到整个求解区域的解。 有限体积法是一种将偏微分方程中的积分用体积平均值表示的方法,将求解区域离散化为有限个体积元,通过求解体积元上的平衡方程得到每个体积元的解,从而得到...
有限差分方法(FDM, Finite Difference Method)、有限体积方法(FVM, Finite Volume Method)和有限元方法(FEM,Finite Element Method)是数值计算领域最主流的三种方法。 「有限」指模板单元的有限长度。 1 有限差分方法简单,几何适应性差; 2 有限体积方法...
限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单...
在计算流体力学(CFD)中,**有限差分法**(FDM)、**有限体积法**(FVM)和**有限元法**(FEM...
有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,...
有限体积法离散的核心和有限元法一样,使用有限个离散点来代替原来整个连续的空间。把计算区域分成不重叠的计算网格,然后确定每个节点位置和节点控制体体积(也就是节点所在的网格单元)。区域几何要素主要有以下几个: 节点:需要解未知物理量的几何位置,一般在节点上定义所有的标量,下面图中的W、P、E三个点就是节点;...
有限元法 有限差分法 有限体积法 有限元法也叫有限单元法(finite element method,FEM) 是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。五十年代初 它首先应用于连续体力学领域-飞机结构静、动态特性分析中 用以求得结构的变形、应力、固有频率以及振型。由于这种方法的有效性 有限单元法的...
有限差分法.有限元法和有限体积法的区别 有限差分法(Finite Difference Method--FDM) 有限差分法是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将 求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级 数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散...