《数仓数据分层(ODS DWD DWS ADS)换个角度看_闻香识代码的博客-CSDN博客_ods和ads》数仓数据分层简介1. 背景数仓是什么, 其实就是存储数据,体现历史变化的一个数据仓库. 因为互联网时代到来,基于数据量的大小,分为了传统数仓和现代数仓.传统数仓,使用传统的关系型数据库进行数据存储,因为关系型数据库本身可以使用...
CDM层通常包括数据明细层(DWD)和数据汇总层(DWS)两个部分。 DWD层指数据明细层,通常接收数据仓库ODS层的原始数据,并进行清洗、标准化、维度退化、异常数据剔除等操作,进行统一处理,为数据分析提供支持。DWD层一般按照业务主题建模,包含多个维度和事实表,维度表可以用来描述业务数据的特征,而事实表则包含了关键数据指标...
数仓的分层也是一样,每一层都有自己的职责,同时都是基于下一层或者下面多层做数据处理之后的结果. 这样一来,最上层就是ADS,数据应用层,当更上层需要数据时,不需要再从最底层进行数据计算,可以复用中间层级的现有结果,可以提升数据处理速度. 同样的,因为更上层数据都是从下一层或者下面多层数据处理而来,这样就算下层...
DW层又细分为维度层(DIM)、明细数据层(DWD)和汇总数据层(DWS),采用维度模型方法作为理论基础, 可以定义维度模型主键与事实模型中外键关系,减少数据冗余,也提高明细数据表的易用性。在汇总数据层同样可以关联复用统计粒度中的维度,采取更多的宽表化手段构建公共指标数据层,提升公共指标的复用性,减少重复加工。
数据仓库层从上到下,又可以分为3个层:数据细节层DWD、数据中间层DWM、数据服务层DWS。 数据细节层DWD 数据细节层:data warehouse details,DWD 该层是业务层和数据仓库的隔离层,保持和ODS层一样的数据颗粒度;主要是对ODS数据层做一些数据的清洗和规范化的操作,比如去除空数据、脏数据、离群值等。
问答分类: 流计算 云原生数据仓库AnalyticDB MySQL版 实时计算 Flink版 问答标签: 实时计算 Flink版实践 云原生数据仓库AnalyticDB MySQL版项目 云原生数据仓库AnalyticDB MySQL版实践 doris云原生数据仓库AnalyticDB MySQL版 云原生数据仓库AnalyticDB MySQL版ods 问答地址:...
ODS DWD DWS DWS,俗称的数据服务层,也有叫做数据聚合层.不过按照经典数据建模理论,一般称之为前者,也就是数据服务层,为更上层的ADS层或者直接面向需求方服务. DWS建模,一般使用主题建模,维度建模等方式 主题建模,顾名思义,围绕某一个业务主体进行数据建模,将相关数据抽离提取出来. 如,将流量会话按照天,月进行聚合...
这是一张典型的数据仓库架构图。按自下而上的顺序,分别为数据仓库ETL(Extract-Transform-Load)层、ODS(Operational Data Store)层、CDM(Common Dimensional Model)层和ADS(Application Data Store)层。其中CDM层主要包括DWD层(Data Warehouse Detail)和DWS层(Data Warehouse Summary)两部分。
这是一张典型的数据仓库架构图。按自下而上的顺序,分别为数据仓库ETL(Extract-Transform-Load)层、ODS(Operational Data Store)层、CDM(Common Dimensional Model)层和ADS(Application Data Store)层。其中CDM层主要包括DWD层(Data Warehouse Detail)和DWS层(Data Warehouse Summary)两部分。
万字详解数仓分层设计架构 ODS-DWD-DWS-ADS 一、数仓建模的意义,为什么要对数据仓库分层? 只有数据模型将数据有序的组织和存储起来之后,大数据才能得到高性能、低成本、高效率、高质量的使用。 1、分层意义 1)清晰数据结构:每一个数据分层都有它的作用域,这样我们在使用表的时候能更方便地定位和理解。