传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的。所以,下面我提出一种确定最佳聚类个数k的方法。 算法描述与步骤:...
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 类别包括的主要算法划分的方法K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)层次的方法BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)基于密度的方法DBSCAN算法(基于...
对于 K - means 算法,TensorFlow 实现了高效的距离计算、聚类中心更新以及迭代过程的优化;在自组织映射(SOM)算法中,对权重初始化、邻域函数定义、权重更新等关键环节进行了优化设计。这种基于 TensorFlow 的算法改进不仅提高了算法执行效率,还为复杂数据环境下的分析提供了新的思路。 分类、聚类、相关、归类与结构模型分...
主要内容:代码主要做的是基于改进k-means算法的场景生成,具体为含有电动汽车负荷的场景聚类问题,其中,光电和电负荷用有序聚类方法,风电加电动汽车负荷用的是k-means方法,具体过程为 1、对光电有序聚类(分开),根据轮廓系数找出合适的断点向量;2、对电负荷有序聚类(分开),根据轮廓系数找出合适的断点向量;3...
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 聚类算法的性能比较 由表可得到以下结论:1)大部分常用聚类算法只适合处理数值型数据;2)若考虑算法效率、初始聚类中心影响性和对异常数据敏感性,其中BIRCH算法、CURE算法以及STING算法能得到较好的结果;3)CURE算法、DBSCAN算法以及ST...
对于 K - means 算法,TensorFlow 实现了高效的距离计算、聚类中心更新以及迭代过程的优化;在自组织映射(SOM)算法中,对权重初始化、邻域函数定义、权重更新等关键环节进行了优化设计。这种基于 TensorFlow 的算法改进不仅提高了算法执行效率,还为复杂数据环境下的分析提供了新的思路。
在本文中,我们采用了改进K-means聚类法帮助客户对随机选择的个股进行了聚类,并对各类股票进行了分析,给出了相应的投资建议。 读取数据 股票盈利能力分析数据 data=read.xlsx("股票盈利能力分析.xlsx") 初始聚类中心个数 初始聚类中心数目k的选取是一个较为困难的问题。传统的K-means聚类算法需要用户事先给定聚类数...
算法描述与步骤: 输入:包含n个对象的数据集; 输出:使得取值最小的对应的k值。 (1)根据初步确定簇类个数k的范围; (2)仍然是用K-means算法对的每一个k值分别进行聚类; (3)分别计算不同聚类个数k所对应的的值; (4)找出最小的值,记下对应的k值,算法结束。
对于 K - means 算法,TensorFlow 实现了高效的距离计算、聚类中心更新以及迭代过程的优化;在自组织映射(SOM)算法中,对权重初始化、邻域函数定义、权重更新等关键环节进行了优化设计。这种基于 TensorFlow 的算法改进不仅提高了算法执行效率,还为复杂数据环境下的分析提供了新的思路。
算法描述与步骤: 输入:包含n个对象的数据集; 输出:使得取值最小的对应的k值。 (1)根据初步确定簇类个数k的范围; (2)仍然是用K-means算法对的每一个k值分别进行聚类; (3)分别计算不同聚类个数k所对应的的值; (4)找出最小的值,记下对应的k值,算法结束。