每个Agent的训练同单个DDPG算法的训练过程类似,不同的地方主要体现在Critic的输入上:在单个Agent的DDPG算法中,Critic的输入是一个state-action对信息,但是在MADDPG中,每个Agent的Critic输入除自身的state-action信息外,还可以有额外的信息,比如其他Agent的动作。 多Agent之间的关系形式 不同的Agent之间的关系大体可以分为...
每个Agent的训练同单个DDPG算法的训练过程类似,不同的地方主要体现在Critic的输入上:在单个Agent的DDPG算法中,Critic的输入是一个state-action对信息,但是在MADDPG中,每个Agent的Critic输入除自身的state-action信息外,还可以有额外的信息,比如其他Agent的动作。 多Agent之间的关系形式 不同的Agent之间的关系大体可以分为...
强化学习中很多场景涉及多个智能体的交互,比如多个机器人的控制,语言的交流,多玩家的游戏等等。不过传统的RL方法,比如Q-Learning或者policy gradient都不适用于多智能体环境。主要的问题是,在训练过程中,每个智能体的策略都在变化,因此从每个智能体的角度来看,环境变得十分不稳定(其他智能体的行动带来环境变化)。对DQN...
每个Agent的训练同单个DDPG算法的训练过程类似,不同的地方主要体现在Critic的输入上:在单个Agent的DDPG算法中,Critic的输入是一个state-action对信息,但是在MADDPG中,每个Agent的Critic输入除自身的state-action信息外,还可以有额外的信息,比如其他Agent的动作。 多Agent之间的关系形式 不同的Agent之间的关系大体可以分为...