二分K均值算法可以加速K-means算法的执行速度,因为它的相似度计算少了并且不受初始化问题的影响,因为这里不存在随机点的选取,且每一步都保证了误差最小 5.4 k-medoids(k-中⼼聚类算法) K-medoids和K-means是有区别的,不一样的地方在于中心点的选取 K-means中,将中心点取为当前cluster中所有数据点的平均值,...
2、核心算法 # 2.算法实现#引入scipy中的距离函数,默认欧式距离fromscipy.spatial.distanceimportcdistclassK_Means(object):#初始化,参数n_clusters(即聚成几类,K)、max_iter(迭代次数)、centroids(初始质心)def__init__(self,n_clusters=6,max_iter=300,centroids=[]):self.n_clusters=n_clustersself.max_i...
总体而言,K-means算法从提出至今经历了多个阶段的发展,不断在算法性能、处理规模和鲁棒性方面进行改进。它在数据挖掘、图像分割、无监督学习等领域得到广泛应用,成为了一种经典而实用的聚类算法。 1.2 K-Means算法思想 基于相似性度量,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大,这就是(空间)...
centorids=np.zeros((K,n))forkinrange(K):points=X[idx==k]centorids[k]=np.mean(points,axis=0)returncentorids KMeans算法 defrun_kMeans(X,initial_centroids,max_iters=10,plot_progress=False):""" Runs the K-Means algorithm on data matrix X, where each row of X is a single example "...
一、scikit-learn中的Kmeans介绍 scikit-learn 是一个基于Python的Machine Learning模块,里面给出了很多Machine Learning相关的算法实现,其中就包括K-Means算法。 官网scikit-learn案例地址:http://scikit-learn.org/stable/modules/clustering.html#k-means部分来自:scikit-learn 源码解读之Kmeans——简单算法复杂的说 ...
算法步骤 一、KMeans算法的步骤 对于给定的一组数据,随机初始化K个聚类中心(簇中心) 计算每个数据到簇中心的距离,并把该数据归为离它最近的簇。 根据得到的簇,重新计算簇中心。 对2、3 进行迭代直至簇中心不再改变或者小于指定阈值。 二、KMeans实现过程中需要注意的地方 ...
kmeans算法又名k均值算法,K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。 其算法思想大致为:先从样本集中随机选取 k个样本作为簇中心,并计算所有样本与这 k个“簇中心”的距离,对于每一个样本,将其划分到与其...
K-Means 聚类 K-means聚类是一种无监督学习算法,它将未标记的数据集分组到不同的聚类中。“K”是指数据集分组到的预定义聚类的数量。 我们将使用 Python 和 NumPy 实现该算法,以更清楚地理解这些概念。 鉴于: K = 簇数 X = 形状 (m, n) 的训练数据:m 个样本和 n 个特征 ...
一、K-means算法概述 K-means算法是一种非常经典的聚类算法,其主要目的是将数据点划分为K个集群,以使得每个数据点与其所属集群的中心点(质心)的平方距离之和最小。这种算法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。 二、K-means算法的基本原理 ...