“他山之石,可以攻玉”,站在巨人的肩膀才能看得更高,走得更远。在科研的道路上,更需借助东风...
使用上下文管理器 torch.no_grad 是实现该目标的另一种方法:在 no_grad 上下文中,所有计算结果都将具有 requires_grad=False ,cb 即使–输入有 requires_grad=True 。请注意,您将无法将梯度反向传播到 no_grad 之前的层。例如: x = torch.randn(2, 2) x.requires_grad = True lin0 = nn.Linear(2, 2...
如果你想冻结模型的一部分并训练其余部分,你可以将你想冻结的参数设置为False。例如,如果你只想保持VGG...
通过将 requires_grad 标志切换为 False ,不会保存任何中间缓冲区,直到计算到达操作输入之一需要梯度的某个点。 火炬.no_grad() 使用上下文管理器 torch.no_grad 是实现该目标的另一种方法:在 no_grad 上下文中,所有计算结果都将具有 requires_grad=False ,cb 即使–输入有 requires_grad=True 。请注意,您将无...