高级RAG 1:分块 (Chunking) & 向量化 (Vectorisation) 2. 搜索索引 3. 重排(reranking)和过滤(filtering) 4. 查询转换 5. 聊天引擎 6. 查询路由 7. 智能体(Agent) 8. 响应合成 RAG 融合 优点: 缺点: RAG融合n不适用场景 编码器和 LLM 微调 编码器微调 排序器微调 评估 总结 参考资料: RAG 检索增强...
Naive RAG在检索、生成和增强三个关键领域面临挑战。检索质量低,导致不匹配的块、幻觉、空中掉落等问题,阻碍了构建全面响应的能力。生成质量引发幻觉挑战,即模型生成的答案没有基于提供的上下文,存在无关上下文和潜在毒性或偏见的问题。增强过程难以有效地结合检索段落中的上下文与当前生...
在RAG中利用LLMs生成的文本时,模型将问题分为已知或未知,选择性地应用检索增强,或将LLM生成器用于取代检索器,通过迭代创建与检索增强生成器无界的内存池,使用内存选择器来选择作为原始问题的双重问题的输出,从而自我增强生成模型。这些方法强调了RAG中创新数据源利用的广泛...
RAG(检索增强生成)简介: 检索增强生成(RAG)是一种优化大型语言模型(LLM)输出的方法,使其能够在生成响应之前引用训练数据之外的权威知识库。LLM 使用海量数据进行训练,拥有数十亿个参数,能够执行诸如回答问题、翻译语言和完成句子等任务。RAG 在 LLM 强大功能的基础上,通过访问特定领域或组织的内部知识库,而无需重新训...
为RAG构建了一个全面的评估框架,包括评估目标和度量标准,并从多个角度分析了其优缺点,同时预测了其未来发展方向和潜在增强。此外,还强调了解决当前挑战的扩展和生态系统的发展。 2 定义 RAG是一种通过整合外部知识库来增强LLMs的模式,采用协同方法,结合信息检索机制和上下文学习(ICL)来提高LLM的性能。RAG工作流程包括...
RAG即检索增强生成,为 LLM 提供了从某些数据源检索到的信息,并基于此修正生成的答案。RAG 基本上是 Search + LLM 提示,可以通过大模型回答查询,并将搜索算法所找到的信息作为大模型的上下文。查询和检索到的上下文都会被注入到发送到 LLM 的提示语中。
大模型RAG,即检索增强生成(Retrieval-Augmented Generation),是一种结合了信息检索技术与语言生成模型的人工智能技术。这种技术的主要目的是增强大型语言模型(LLMs,Large Language Models)在处理知识密集型任务时的能力,如问答、文本摘要、内容生成等。 RAG的核心特点 检索与生成结合:RAG模...
RAG 系统的起点一般是一个文本文档的语料库,简单看起来是这样的: 把文本分割成块,然后把这些分块嵌入到向量与transformer编码器模型,把所有这些向量建立索引,最后创建一个 LLM 提示语,告诉模型回答用户的查询,给出在搜索步骤中找到的上下文。在运行时,我们用相同的编码器模型完成用户查询的向量化,然后执行这个查询向量...
在RAG中,精确语义表示、协调查询和文档语义空间、以及检索器输出与大型语言模型偏好的协调,是高效检索相关文档的核心问题。 4.1 加强语义表示 RAG中的语义空间对于查询和文档的多维映射至关重要,建立准确语义空间的方法包括块优化和管理外部文档的微调嵌入模型。块优化需要考虑索引内容的性质、嵌入模型、用户查询的预期长度...
大模型 RAG(Retrieval-Augmented Generation)是一种结合了检索(Retrieval)与生成(Generation)能力的先进人工智能技术,主要用于增强大型语言模型(LLMs,Large Language Models)在特定任务中的表现,特别是那些需要访问外部知识库或实时信息的任务。 RAG 模型旨在克服 LLMs 存储容量有限、难以即时获取最新信息以及在特定领域知识...