通过多模态深度学习,结合不同的模态或信息类型来提高效果,从直观上看是一项很有吸引力的任务,但在实践中,如何结合不同的噪声水平和模态之间的冲突是一个挑战。此外,模型对预测结果有不同的定量影响。在实践中最常见的方法是将不同输入的高级嵌入连接起来,然后应用softmax。这种方法的问题是,它将给予所有子网络...
人机交互: 多模态深度学习可用于开发更自然、更直观的界面,如也能解释面部表情的语音识别系统或既能理解口头语言又能理解手势的虚拟助手。 医疗保健: 通过整合各种来源的数据,如医疗图像、电子健康记录和可穿戴传感器,多模态深度学习可以提高诊断的准确性,并实现更个性化的治疗计划。 机器人和自主系统: 多模态深度学习...
表2总结了具有代表性的多模态深度学习模型。 表2: 代表性多模态深度学习模型摘要. 3.1 基于网络的深度信念多模态数据融合 3.1.1 示例1 Srivastava 和 Salakhutdinov (2012) 提出了一种基于深度玻尔兹曼学习模型的多模态生成模型,通过拟合多模态数据在各种模态(...
多模态深度学习在不同的多模态组合和学习目标下,主要包含四项关键技术—模态表示、模态传译、模态对齐和模态融合。 三、单模态表示 模态表示是多模态深度学习的基础,分为单模态表示和多模态表示。单模态表示指对单个模态信息进行线性或非线性映射,产生单个模态信息的高阶语义特征表示。多模态表示基于单模态表示,并对单...
在多模态深度学习中,最典型的模态是视觉(图像、视频)、文本和听觉(语音、声音、音乐)。然而,其他不太典型的模式包括 3D 视觉数据、深度传感器数据和 LiDAR 数据(自动驾驶汽车中的典型数据)。在临床实践中,成像方式包括计算机断层扫描 (CT) 扫描和 X 射线图像,而非图像方式包括脑电图 (EEG) 数据。传感器...
代表性多模态深度学习模型摘要. 3.1 基于网络的深度信念多模态数据融合 3.1.1 示例1 Srivastava 和 Salakhutdinov (2012) 提出了一种基于深度玻尔兹曼学习模型的多模态生成模型,通过拟合多模态数据在各种模态(如图像、文本和音频)上的联合分布来学习多模态表示。
代表性多模态深度学习模型摘要. 3.1 基于网络的深度信念多模态数据融合 3.1.1 示例1 Srivastava 和 Salakhutdinov (2012) 提出了一种基于深度玻尔兹曼学习模型的多模态生成模型,通过拟合多模态数据在各种模态(如图像、文本和音频)上的联合分布来学习多模态表示。
代表性多模态深度学习模型摘要. 3.1 基于网络的深度信念多模态数据融合3.1.1 示例1 Srivastava 和 Salakhutdinov (2012) 提出了一种基于深度玻尔兹曼学习模型的多模态生成模型,通过拟合多模态数据在各种模态(如图像、文本和音频)上的联合分布来学习多模态表示。
我们平常使用的如图像识别,语音识别这种输入单个样本x(尽管样本可能有多个特征),但是输出对应的y值(结果)就是比较简单的单模态模型。 即单个模型对输入的信息进行线性或者非线性的映射。 多模态可以指的是通过多个模型的组合来让深度学习学习到更多不同的特征。如我们生活中对于事物,除了仅仅靠眼睛捕获,还有耳朵分析,...
关于NLP(第 2.1 小节)的一个非常重要的概念叫做词嵌入,几乎是现在所有多模态深度学习架构的重要组成部分。这一概念也为基于Transformer的模型奠定了基础,比如 BERT ,该模型在几个 NLP 任务中都取得了重大进展。特别是Transformer的自注意力机制彻底改变了 NLP 模型,这也是为什么大多数 NLP 模型将Transformer作为核心。