首先通过构建一个随机变量将多类要素实例分布数据表达为混合空间点过程,并引入一个非参统计指标对同位模式进行特征尺度判别;基于此,定义一种条件概率密度分布函数,利用点过程分解思想挖掘多尺度空间同位模式及其实例分布。试验分析结果表明本文方法可...
多尺度空间同位模式挖掘的点过程分解方法 邓敏,谌恺祺,石岩,陈袁芳,郭艺文 中南大学地球科学与信息物理学院地理信息系,湖南 长沙 410083 A Multi-scale spatial co-location pattern mining method based on point process decomposition DENG Min, CHEN Kaiqi, SHI Yan, CHEN Yuanfang, GUO Yiwen Department...
首先通过构建一个随机变量将多类要素实例分布数据表达为混合空间点过程,并引入一个非参统计指标对同位模式进行特征尺度判别;基于此,定义一种条件概率密度分布函数,利用点过程分解思想挖掘多尺度空间同位模式及其实例分布.试验分析结果表明本文方法可以准确挖掘空间同位模式在不同尺度的空间分布形态,并且有效降低了人为设定...
首先通过构建一个随机变量将多类要素实例分布数据表达为混合空间点过程,并引入一个非参统计指标对同位模式进行特征尺度判别;基于此,定义一种条件概率密度分布函数,利用点过程分解思想挖掘多尺度空间同位模式及其实例分布.试验分析结果表明本文方法可以准确挖掘空间同位模式在不同尺度的空间分布形态,并且有效降低了人为设定...