遗传算法是一种受生物进化启发的全局优化搜索算法,它通过模拟种群的进化过程来寻找最优解。NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种基于遗传算法的多目标优化方法,它引入了帕累托最优集合的思想。NSGA-II算法主要由三个部分组成:快速非支配排序方法、拥挤比较算子和主程序。快速非支配排序方法是将...
将一组解分成n个集合:rank1,rank2…rankn,每个集合中所有的解都互不支配,但ranki中的任意解支配rankj中的任意解(i<j). 综上所述,NSGAII的步骤如下所示: 步骤1:编码。遗传算法在进行搜索之前,将变量编成一个定长的编码——用二进制字符串来表示,这些字符串的不同组合, 便构成了搜索空间不同的搜索点。 ...
1 概述 基于非支配排序遗传算法(NSGA-II)的综合能源优化调度是一种常用的方法,用于解决能源系统中的多目标优化问题。该方法将非支配排序和遗传算法相结合,通过演化算法的方式搜索出一组最优解,这些解在多个目标函数的情况下不可被其他解所支配。 下面是基于NSGA-II的综合能源优化调度的一般步骤: 1. 定义问题:确定...
目前已有多种算法被用于GI多目标优化研究当中,其中非支配排序遗传算法NSGA-II(fast elitist non-dominated sorting genetic algorithm)作为进化算法的一种,其基于帕累托的优化模式及快速收敛的特性使之成为应用最为广泛的多目标优化算法。基于帕...
1.算法描述 NSGA-II是基于的非支配排序的方法,在NSGA上进行改进,也是多目标进化优化领域一个里程碑式的一个算法。 NSGA-Ⅱ算法是 Srinivas 和 Deb ...
为解决该问题,本工作提出了基于非支配排序遗传算法(non-dominated sorting genetic algorithm-II,NSGA-II)对锂离子电池均衡系统的均衡指标进行优化的计算框架。首先,以均衡阈值(ΔV)作为问题参数,兼顾均衡速度、开关次数、荷电状态(state of charge,SOC)一致性最小作为多个均衡指标建立目标函数,并给出阈值与均衡指标...
简介:为了提升几种基本的协同过滤推荐算法的精确度与召回率,引入了多目标遗传优化算法NSGA-II,并利用模型加权融合的方法实现了新的协同过滤算法。实验证明,该算法相较几种基本的协同过滤算法在精确度与召回率上均有所提升。 个性化推荐系统是近年来解决信息超载问题一个有效途径,它根据用户的信息需求、兴趣等历史行为,...
NSGA-II算法中的快速非支配排序是根据个体的非劣解水平对种群分层,其作用是指引搜索向Pareto最优解集方向进行。它是一个循环的适应值分级过程:首先找出群体中非支配解集,记为第一非支配层F,将其所有个体赋予非支配序值irank=1(其中irank是个体i的非支配排序值),并从整个种群中除去;然后继续找出余下群体中非...
带精英策略的非支配排序遗传算法(NSGA-II)客户满意度碳排放为优化冷链物流配送路径,提高配送效率,实现低碳绿色出行,综合考虑顾客对农产品新鲜度的要求,冷链企业对物流成本的控制以及社会环境对碳排放的约束等方面,以生鲜农产品新鲜度和准时到达率量化客户满意度,以固定成本,运输成本,制冷成本和惩罚成本构成物流成本,以...
NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;...