2. LoRA 微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训练模型参数,新增参数。优点是减少了微调的参数量和成本,同时能达到与全模型微调相近的效果。 3. P-tuning v2 微调:引入了 prefix-tuning 的思想,每一层都加入了 prefix,并采用了多任务学习。解决了 P-tuning v1 中序列标注任务效果不佳和普遍性差...
1、ChatGLM2-6B 基于 P-Tuning v2 的微调 - 参考信息 2、环境准备 (1)项目工作目录 (2)克隆 https://github.com/THUDM/ChatGLM2-6B 代码 (3)克隆 chatglm2-6b 模型 (4)创建虚拟环境 (5)激活环境安装依赖 (6)更改 torch==2.1.2 为 torch==2.1.2+cu118 (7)安装微调所需依赖 (8)测试歪脖示例...
在P-tuning v2 训练时模型只保存 PrefixEncoder 部分的参数,所以在推理时需要同时加载原 ChatGLM-6B 模型以及 PrefixEncoder 的权重 model_path ="/opt/tritonserver/python_backend/models/chatglm2-6b"model = AutoModel.from_pretrained(model_path,config=config, trust_remote_code=True) prefix_state_dict =...
2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训练模型参数,新增参数。优点是减少了微调的参数量和成本,同时能达到与全模型微调相近的效果。 3. P-tuning v2微调:引入了prefix-tuning的思想,每一层都加入了prefix,并采用了多任务学习。解决了P-tuning v1中序列标注任务效果不佳和普遍性差的问题。其...
综上所述,各种微调方法适用于不同的场景和任务。SFT监督微调适用于快速适应目标任务,LoRA适用于减少参数量和成本,P-tuning v2适用于多任务学习,而Freeze适用于提取特定层次的特征。 1.下载glm2训练脚本 git clonehttps://github.com/THUDM/ChatGLM2-6B.git ...
综上所述,各种微调方法适用于不同的场景和任务。SFT监督微调适用于快速适应目标任务,LoRA适用于减少参数量和成本,P-tuning v2适用于多任务学习,而Freeze适用于提取特定层次的特征。 1.下载glm2训练脚本 git clone https://github.com/THUDM/ChatGLM2-6B.git 2.然后使用 pip 安装依赖 pip install -r requireme...
综上所述,各种微调方法适用于不同的场景和任务。SFT监督微调适用于快速适应目标任务,LoRA适用于减少参数量和成本,P-tuning v2适用于多任务学习,而Freeze适用于提取特定层次的特征。 1.下载glm2训练脚本 git clone https://github.com/THUDM/ChatGLM2-6B.git ...
1、地址:https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/README.md 2、参数示例 PRE_SEQ_LEN=128LR=2e-2CUDA_VISIBLE_DEVICES=0python3 main.py \--do_train \--train_file AdvertiseGen/train.json \--validation_file AdvertiseGen/dev.json \--prompt_column content \--response_column su...
综上所述,各种微调方法适用于不同的场景和任务。SFT监督微调适用于快速适应目标任务,LoRA适用于减少参数量和成本,P-tuning v2适用于多任务学习,而Freeze适用于提取特定层次的特征。 1.下载glm2训练脚本 git clonehttps://github.com/THUDM/ChatGLM2-6B.git ...
ChatGLM2-6B P-Tuning v2 是一种基于 Transformer 的预训练语言模型,它在大量无标签数据上进行预训练,并使用 P-tuning 技术进行微调。P-tuning 是一种半监督学习技术,它使用无标签数据来增强预训练模型的泛化能力。下面我们将通过一个实例展示如何使用 ChatGLM2-6B P-Tuning v2 进行医疗问答任务的微调训练。假设...