多模态融合卷积神经网络深度学习本发明涉及一种基于多模态自适应卷积的RGBD图像语义分割方法,包括:编码模块分别提取RGB图像特征和深度图像特征;将RGB特征和深度特征送入融合模块进行融合;其中,首先将多模态特征输入多模态自适应卷积生成模块,计算出两个不同尺度的多模态自适应卷积核;然后,多模态特征融合模块将RGB特征和...
本发明涉及一种基于多模态自适应卷积的RGBD图像语义分割方法,包括:编码模块分别提取RGB图像特征和深度图像特征;将RGB特征和深度特征送入融合模块进行融合;其中,首先将多模态特征输入多模态自适应卷积生成模块,计算出两个不同尺度的多模态自适应卷积核;然后,多模态特征融合模块将RGB特征和深度特征分别与自适应卷积核进行...
本发明涉及一种基于多模态自适应卷积的RGB‑D图像语义分割方法,包括:编码模块分别提取RGB图像特征和深度图像特征;将RGB特征和深度特征送入融合模块进行融合;其中,首先将多模态特征输入多模态自适应卷积生成模块,计算出两个不同尺度的多模态自适应卷积核;然后,多模态特征融合模块将RGB特征和深度特征分别与自适应卷积核...
本发明涉及一种基于多模态自适应卷积的RGBD图像语义分割方法,包括:编码模块分别提取RGB图像特征和深度图像特征;将RGB特征和深度特征送入融合模块进行融合;其中,首先将多模态特征输入多模态自适应卷积生成模块,计算出两个不同尺度的多模态自适应卷积核;然后,多模态特征融合模块将RGB特征和深度特征分别与自适应卷积核进行...