1.命名实体识别介绍 **命名实体识别(Named Entity Recoginition, NER)**旨在将一串文本中的实体识别出来,并标注出它所指代的类型,比如人名、地名等等。具体地,根据MUC会议规定,命名实体识别任务包括三个子任务: 实体名:人名、地名、机构名等 时间表达式:日期、时间、持续时间等 ...
命名实体识别(NER)的任务是找到文本中提到的每个命名实体,并标记其类型。构成命名实体类型的是特定于任务的;人员、地点和组织是常见的。一旦提取了文本中的所有命名实体,就可以将它们链接到与实际实体相对应的集合中。 关系抽取:发现和分类文本实体之间的语义关系。这些关系通常是二元关系,如子女关系、就业关系、部分-...
1.3命名实体识别的应用场景 命名实体识别在自然语言处理领域有着广泛的应用场景,如信息抽取、文本分类、知识图谱构建、问答系统等。在信息抽取任务中,命名实体识别能够帮助抽取文本中的实体关系,从而构建结构化的知识库。在文本分类任务中,命名实体识别能够帮助识别文本中的关键实体,从而提高分类性能。在知识图谱构建任务中...
知识抽取包括三个要素:命名实体识别(NER)、实体关系抽取(RE)和属性抽取。其中属性抽取可以使用python爬虫爬取百度百科、维基百科等网站,操作较为简单,因此命名实体识别(NER)和实体关系抽取(RE)是知识抽取中非常重要的部分,同时其作为自然语言处理(NLP)中最遇到的问题一直以来是科研的研究方向之一。 本文将以深度学习的...
1.1 命名实体识别的现状 命名实体识别(NER)任务按照实体是否“嵌套(nested)”分为flat NER(非嵌套型)和nested NER(嵌套型)。如下图所示: 其中,flat NER经常按照序列标注的方式去解决;nested NER则是通过构建pipeline的方式解决(如:先识别出实体,再对识别出的实体进行分类),此外,pipelined systems还有错误传递、运行...
命名实体识别(Named Entity Recognition, NER)和实体关系抽取(Entity Relationship Extraction)是机器翻译中的两个关键任务,本文将详细介绍这两个方法及其在机器翻译中的应用。 一、命名实体识别(Named Entity Recognition, NER) 命名实体识别是一种识别文本中特定类别实体(如人名、地名、组织机构名等)的技术。NER在机器...
命名实体识别、实体消歧、实体统一、指代消解、关系抽取。 1) 命名实体识别 1-1) 命名实体概念 命名实体识别(Named Entity Recognition,NER)是NLP中一项非常基础的任务。NER是信息提取、问答系统、句法分析、机器翻译等众多NLP任务的重要基础工具。命名实体识别的准确度,决定了下游任务的效果,是NLP中非常重要的一个基础...
最后吐槽:PP-Structure的关系抽取只能做两类实体之间的关系抽取,而且代码太多太复杂,很多地方都是hard-coded只能用在论文数据集上的,我已经放弃百度转投huggingface上的实现了,一定要用PP-Structure的诸位保重。。。 系统配置 OS:Ubuntu 22.04.2 LTS GPU:NVIDIA A800 80GB 3张 ...
本文将探讨NLP模型在NER和关系抽取中的应用研究现状、方法和应用。一、命名实体识别(NER)背景介绍:命名实体识别是指从文本中识别出具有特定意义的实体,如人名、地名、组织机构名等。NER是NLP领域的重要任务之一,对于信息抽取、问答系统和机器翻译等任务具有重要作用。NER方法:传统的基于规则和特征工程的方法在NER...
命名实体识别(Named Entity Recognition, NER)和关系抽取(Relation Extraction)是NLP中两个关键的任务,本文将探讨解决这两个问题的方法和应用。 命名实体识别是指从文本中识别和分类出特定的命名实体,如人名、地名、组织机构名等。这一任务在信息抽取、问答系统、机器翻译等领域中有着广泛的应用。在解决命名实体识别...