分组查询注意力机制 Grouped-query attention(GQA) 2023年 Google Research GQA:Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints https://arxiv.org/pdf/2305.13245 提高模型性能,Llama2使用了分组注意力机制,主要思想就是降低key-value的head数量来提升性能。对于RoPE感兴趣的可以详细阅...
MIT新研究:减少 KV 缓存大小新方法 | 键值(KV)缓存在加速基于 Transformer 的自回归大型语言模型(LLM)的解码过程中发挥着至关重要的作用。然而,在序列长度较长、批量较大的情况下,存储 KV 缓存所需的内存量可能会变得过大。 自Transformer 发明以来,为减少 KV 缓存大小而发现的两种最有效的干预措施是多查询注意...
Qwen1.5-110B内置Transformer解码器,还有黑科技分组查询注意力(GQA),让模型跑得飞快又精准。文本上下文超长待机,32K tokens不是梦,多国语言切换自如,跨越十种语言的界限,沟通无国界🌍。📈虽然练功秘籍(预训练方法)没大变,但块头(模型规模)一涨,实力那是杠杠滴提升!这波操作证明,越大越强,在聊天模型界也是真理...