分类与回归树的英文是Classfication And Regression Tree,缩写为CART。CART算法采用二分递归分割的技术将当前样本集分为两个子样本集,使得生成的每个非叶子节点都有两个分支。非叶子节点的特征取值为True和False,左分支取值为True,右分支取值为False,因此CART算法生成的决策树是结构简洁的二叉树。CART可以处理连续型变量...
CART剪枝算法由两步组成:首先从生成算法产生的决策树T0底端开始剪枝,直到T0的根结点,形成子树序列{T0,T1,..,Tn},然后通过交叉验证法在独立的验证数据集上对子树序列进行测试,选出最优子树。 剪枝的方法分为前剪枝和后剪枝:前剪枝是指在构造树的过程中就知道哪些节点可以剪掉,于是干脆不对这些节点进行分裂,在分...
分类与回归树(CART) 一、CART简介 分类与回归树(calssification and regression tree,CART)是决策树算法中的一种,与其他决策树算法相同,同样由特征选择,树的生成与剪枝组成。CART被广泛应用,且被用于树的集成模型,例如,GBDT、RF等集成算法的基学习器都是CART树。决策树是典型的非线性模型,GBDT和RF因此也是非线性模...
CART全称叫Classification and Regression Tree,即分类与回归树。CART假设决策树是二叉树,内部结点特征的取值只有“是”和“否”,左分支是取值为“是”的分支,有分支则相反。这样的决策树等价于递归地二分每个特征。 CART分类回归树可以做分类或者回归。如果待预测结果是离散型数据,则CART生成分类决策树;如果待预测结果...
叶子节点:在分类任务中,叶子节点表示某个类的标签;在回归任务中,叶子节点表示一个连续值。 剪枝:CART 树的一个关键步骤是剪枝(pruning),即通过删除不重要的节点来减少树的复杂度,从而避免过拟合。在构建初期,树可能会无限制地增长直到完全分类训练数据,但这样会导致在测试数据上的表现不佳。因此,通过剪枝来控制树...
分类回归树(Classification and Regression Tree,CART)是一种典型的决策树算法,CART算法不仅可以应用于分类问题,而且可以用于回归问题。 一、树回归的概念 对于一般的线性回归,其拟合的模型是基于全部的数据集。这种全局的数据建模对于一些复杂的数据来说,其建模的难度也会很大。其后,我们有了局部加权线性回归,其只利用...
CART 算法,英文全称叫做 Classification And Regression Tree,中文叫做分类回归树。CART 只支持二叉树。同时 CART 决策树比较特殊,既可以作分类树,又可以作回归树。 分类树可以处理离散数据,也就是数据种类有限的数据,它输出的是样本的类别,而回归树可以对连续型的数值进行预测,也就是数据在某个区间内都有取值的可能...
1.分类树 1.1 基尼系数 1.1 特征离散 1.2 特征连续 2.回归树 三、剪枝算法 2021人工智能领域新星创作者,带你从入门到精通,该博客每天更新,逐渐完善机器学习各个知识体系的文章,帮助大家更高效学习。 一、概述 针对于ID3和C4.5只能处理分类的问题,后来有人提出了CART,该模型是由Breima等人在1984年提出的,它是被...
1. 简介 树模型直白且清晰,它即可以用来分类也可以用来预测,他最大的特点是容易解释,这在实际应用中十分关键。树通过在predictor中创建许多的分支来创建(IF ELSE...
CART 全称为 Classification And Regression Trees,即分类回归树。顾名思义,该算法既可以⽤于分类还可以⽤于回归。克服了 ID3 算法只能处理离散型数据的缺点,CART 可以使⽤⼆元切分来处理连续型变量。⼆元切分法,即每次把数据集切分成两份,具体地处理⽅法是:如果特征值⼤于给定值就⾛左⼦树,...