百度试题 题目函数 在区间 上有界,且只有有限个间断点,则在 上可积.( ) A.正确B.错误相关知识点: 试题来源: 解析 A 反馈 收藏
百度试题 题目函数在上有界且只有有限个间断点是在上可积的( ) A. 充分必要 B. 充分非必要 C. 必要非充分 D. 既非充分又非必要条件 相关知识点: 试题来源: 解析 B.充分非必要 反馈 收藏
设函数f(x)在[a,b]上有界且只有有限个间断点,则f(x)在[a,b]上可积。对于有限个间断点来说,其面积之和=间断点数量×单个间断点对应的面积。因为间断点数量是有限个,即为有界量;单个间断点对应的面积是无穷小量。所以两者的乘积仍然是无穷小量,即有限个间断点面积之和仍然为0。
解答一 举报 第一类间断点是指函数的左右极限存在,函数在该点不连续.但判断函数可积时,只需函数有界,并且只有有限个间断点.并不需要函数的间断点是第一类的.也就是说,不用管间断点的类型,只要函数有界,间断点个数有限,则函数可积. 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) ...
设f(x)在区间(a,b)上有界,且只有有限个间断点,则f(x)在(a,b)上可积。所以有界不一定可积。例如狄利克雷函数f(x)=1(x是有理数的时候),而f(x)=0(x是无理数的时候),所以f(x)是有界的。但f(x)在任意区间内有无数个间断点,所以这个函数在任意区间内不可积。如...
百度试题 题目函数在上有界且只有有限个间断点是在上可积的( ) A. 充分不必要条件 B. 必要但不充分条件 C. 充要条件 D. 无关条件 相关知识点: 试题来源: 解析 A.充分不必要条件 反馈 收藏
函数 在区间 上有界且只有有限个间断点是函数 在区间 上可积的_。A.无关条件B.必要条件C.充要条件D.充分条件
函数可积的三个条件是:函数在积分区间上有界,只有有限个间断点;函数在积分区间上连续;函数在积分区间上单调有界。
非充分也非必要先证明非充分比如函数f(x) =1 当x为[a,b]上的有理数 =-1 当x为[a,b]上的... 上,可积分的充分条件之一为:函数在闭区间有界,且... 什么叫f(x)在区间【a,b】上有界,且只有有限个间断点 设函数f(x)在[a,b]上有界且只有有限个间断点,则f(x)在[a,b]上可积。对于有限个间断...