● 决策树易于理解和解释,它可用于处理分类和回归问题,并且能够处理数值型和离散型特征。 ● 然而,决策树容易过拟合,特别是在处理复杂的问题时,需要使用剪枝等技术进行优化。 ● 各个节点的特征选择不是随机的,但随机森林里决策树的特征选择是随机的。 1.3逻辑回归(Logistic Regression) ● 逻辑回归是一种用于分类问...
这部分通过rpart、rpart.plot和party包来实现决策树模型及其可视化,通过randomForest包拟合随机森林,通过e1071包构造支持向量机,通过R中的基本函数glm()实现逻辑回归。在探索之前,先安装好相应的包。 代码语言:javascript 复制 pkgs<-c("rpart","rpart.plot","party","randomForest","e1071")install.packages(pk...
决策树算法可以用于分类和回归问题。决策树的应用场景包括疾病诊断、贷款申请审批等。 随机森林 随机森林是一种集成学习算法。它将多个决策树组合起来,以减少单个决策树的过拟合风险。随机森林算法可以用于分类和回归问题。随机森林的应用场景包括图像识别、金融欺诈检测等。 支持向量机 支持向量机是一种用于分类和回归问题...
一、基础 逻辑回归中的决策边界,本质上相当于在特征平面中找一条直线,用这条直线分割所有的样本对应的分类; 逻辑回归只可以解决二分类问题(包含线性和非线性问题),因此其决策边界只可以将特征平面分为两部分; 问题:使用直线分类太过简单,因为有很多情况样本的分类的决策边界并不是一条直线,如下图;因为这些样本点的...
决策树与逻辑回归的分类区别也在于此,逻辑回归是将所有特征变换为概率后,通过大于某一概率阈值的划分为一类,小于某一概率阈值的为另一类;而决策树是对每一个特征做一个划分。另外逻辑回归只能找到线性分割(输入特征x与logit之间是线性的,除非对x进行多维映射),而决策树可以找到非线性分割。
逻辑回归 R R ST段压低是最重要的特征,其次是胸痛类型2等等。 混淆矩阵 随机森林 变量重要性 混淆矩阵 绘制决策树 神经网络 变量重要性 混淆矩阵 混淆矩阵(Confusion Matrix)是用于评估分类模型性能的一种表格。它以四个不同的指标来总结模型对样本的分类结果:真阳性(True Positive, TP)、真阴性(True Negative, ...
随机森林的原理是利用bootstrap 和随机特征选择方法,生成多个决策树。计算方法主要包括以下步骤: (1) 数据集划分 (2) 特征选择 (3) 决策树生成 (4) 预测结果综合 3.应用场景与优缺点 随机森林广泛应用于各种数据挖掘任务,如分类、回归、特征选择等。优点是具有较好的泛化能力和稳定性,缺点是计算复杂度较高。 五...
决策树分析法是通过决策树图形展示临床重要事件的可能发展过程及结局,比较各种备选方案的预期结果从而进行择优决策的方法。决策树分析法通常有6个步骤。 明确决策问题,确定备选方案 对欲解决的问题有清楚的界定,应列出所有可能的备选方案。在决策树上决策的选择应用决策结来代表,通常用方框表示,每个备选方案用从方框...
本文中我们介绍了决策树和随机森林的概念,并在R语言中用逻辑回归、回归决策树、随机森林进行信用卡违约数据分析 决策树是由节点和分支组成的简单树状结构。根据每个节点的任何输入特征拆分数据,生成两个或多个分支作为输出。这个迭代过程增加了生成的分支的数量并对原始数据进行了分区。这种情况一直持续到生成一个节点,其...