在一棵二叉树的先序遍历、中序遍历、后序遍历所产生的序列中,所有叶结点的先后顺序( )。 A.都不相同B.完全相同C.先序和中序相同,而与
什么是二叉树的先序遍历、中序遍历和后序遍历?相关知识点: 试题来源: 解析 答案:先序遍历是指按照根节点-左子树-右子树的顺序遍历二叉树;中序遍历是指按照左子树-根节点-右子树的顺序遍历二叉树;后序遍历是指按照左子树-右子树-根节点的顺序遍历二叉树。
中序遍历:在中序遍历中,首先递归地按照中序遍历的方式访问左子树,然后访问根节点,最后递归地按照中序遍历的方式访问右子树。顺序为「左子树 - 根节点 - 右子树」,简记为:左根右。 后序遍历:在后序遍历中,首先递归地按照后序遍历的方式访问左子树,然后递归地按照后序遍历的方式访问右子树,最后访问根节点。顺序...
后序遍历:后续遍历的特点是执行操作时,肯定已经遍历过该节点的左右子节点,故适用于要进行破坏性操作的情况,比如删除所有节点 先序:中左 右的顺序(先访问根节点,先序遍历左子树,先序遍历右子树) 中序:左中 右的顺序 后序:左右 中的顺序 遍历过程相同,只是访问各个节点的时机不同 先序遍历 递归实现: publicst...
从代码上我们可以看出来,所谓先序、中序、后序,在代码上只不过是输出语句 printf(“%c “, tree->data); 在进入递归代码的不同位置而起到的不同的输出作用。以上代码是先序遍历,如果你想改成中序遍历,就把进入递归前的 printf(“%c “, tree->data); 注释,然后将递归左子树下面的 printf(“%c “, ...
解析 先序遍历:若二叉树为空,则退出,否则进行下面操作:访问根结点、先序遍历左子树、先序遍历右子树。 中序遍历:若二叉树为空,则退出,否则进行下面操作:中序遍历左子树、访问根结点、中序遍历右子树。 后序遍历:若二叉树为空,则退出,否则进行下面操作:后序遍历左子树、后序遍历右子树、访问根结点。
既然有先序遍历,那就会有中序遍历和后序遍历,这两个遍历以及其和先序遍历的区别我们等会再讲。 我们按照这样的操作来对之前那个二叉树来进行实现: 首先,判断二叉树是否为空,很显然不为空,那么我们就开始操作: 第一,访问根节点: 注意!!!在这里,访问根节点只是个抽象的行为,而实际我们可以自定义对该结点的操作...
中序遍历:左子树--->根结点---> 右子树 后序遍历:左子树 ---> 右子树---> 根结点 层次遍历:只需按层次遍历即可 例如,求下面二叉树的各种遍历 前序遍历:1 2 4 5 7 8 3 6 中序遍历:4 2 7 5 8 1 3 6 后序遍历:4 7 8 5 2 6 3 1 ...
先序遍历(先根遍历):PreOrder(T)——从二叉树的根结点开始,按照根结点、左子树、右子树的顺序完成遍历; 中序遍历(总根遍历):InOrder(T)——从二叉树的左子树开始,按照左子树、根结点、右子树的顺序完成遍历; 后序遍历(后根遍历):PostOrder(T)——从二叉树的左子树开始,按照左子树、右子树、根结点的顺序完...
1.根据前序遍历、中序遍历,求后序遍历 例: 前序遍历: GDAFEMHZ 中序遍历: ADEFGHMZ 画树求法: 第一步,根据前序遍历的特点,我们知道根结点为G 第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。