1.互斥量(简化的信号量,只有两种状态:0和1,有所有者的概念)---资源冲突 互斥量其实可以理解为一个简化的信号量,它只有两种状态:0和1,互相斥量是管理临界资源的一种有效手段, 因为互斥量是独占的, 所以在一个时刻只允许一个线程占有互斥量,利用这个性质来实现共享资源的互斥量保护,任何时刻只允许一个线程获得...
互斥量一旦被上锁后,其他线程如果想给该互斥量上锁,那么就会阻塞在这个操作上。如果在此之前该互斥量已经被其他线程上锁,那么该操作将会一直阻塞在这个地方,直到获得该锁为止。 在得到互斥量后,你就可以进入关键代码区了。 同样,在操作完成后,你必须调用下面的函数来给互斥量解锁,也就是前面所说的释放。这样其他等...
条件变量通过允许线程阻塞和等待另一个线程发送信号的方法弥补了互斥锁的不足,它常和互斥锁一起使用。使用时,条件变量被用来阻塞一个线程,当条件不满足时,线程往往解开相应的互斥锁并等待条件发生变化。一旦其它的某个线程改变了条件变量,它将通知相应的条件变量唤醒一个或多个正被此条件变量阻塞的线程。这些线程将重...
条件变量是利用线程间共享的全局变量进行同步的一种机制。 条件变量的逻辑:一个线程挂起去等待条件变量的条件成立,而另一个线程使条件成立。 基本原理 线程在改变条件状态之前先锁住互斥量。如果条件为假,线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多...
条件变量与互斥锁、信号量的区别 1.互斥锁必须总是由给它上锁的线程解锁,信号量的挂出即不必由执行过它的等待操作的同一进程执行。一个线程可以等待某个给定信号灯,而另一个线程可以挂出该信号灯。 2.互斥锁要么锁住,要么被解开(二值状态,类型二值信号量)。
详解linux多线程——互斥锁、条件变量、读写锁、自旋锁、信号量,一、互斥锁(同步)在多任务操作系统中,同时运行的多个任务可能都需要使用同一种资源。这个过程有点类似于,公司部门里,我在使用着打印机打印东西的同时(还没有打印完),别人刚好也在此刻使用打印机打印
读写锁(Read-Write Lock):读写锁是一种特殊类型的锁,允许多个线程同时读共享资源,但写操作是互斥的。这意味着当没有线程写资源时,多个线程可以同时读,但写操作需要独占访问。 信号量(Semaphore):信号量是一个计数器,用于限制对资源的访问。线程在访问资源之前必须获取信号量,如果信号量的值大于0,线程可以继续执行...
l调用pthread_cond_wait()等待信号。如果没有信号,线程将会阻塞,直到有信号。该函数的第一个参数是条件变量,第二个参数是一个mutex。在调用该函数之前必须先获得互斥量。如果线程阻塞,互斥量将立刻会被释放。 下面给出一个简单的使用例子。 #include <pthread.h> ...
常用的OS同步机制有:互斥体(mutex)、“多读取者/单写入者”锁(reader/writer locks)、信号量(semaphores)和条件变量(condition variable)。方法/步骤 1 1.互斥体(mutex,Mutual Exclusion)锁当共享资源被多个线程并发访问时,为了确保这些资源的完整性,我们可以使用互斥体(mutex)锁。互斥体可用来串行执行多个线程,...
条件变量是一种线程间通信机制,它允许线程被阻塞,直到某个特定的条件被触发。条件变量通常与互斥锁一起使用来实现线程同步。在Linux系统下,条件变量的实现是通过pthread_cond_t结构体来实现的。 三种技术的最大区别在于它们的使用场景。互斥锁用于保护共享资源的互斥访问,信号量用于控制并发线程的数量,而条件变量用于同...