从历史(训练窗口长度)中获取最新的有效序列。将最新的序列输入模型并预测下一个值。将预测值附加到历史记录上。迭代重复步骤1。这里需要注意的是,根据训练模型时选择的参数,你预测的越长(远),模型就越容易表现出它自己的偏差,开始预测平均值。因此,如果没有必要,我们不希望总是预测得太超前,因为这会影响预...
self.hidden= (hidden_state, cell_state)# Forward Passx, h=self.lstm(x, self.hidden)# LSTMx=self.dropout(x.contiguous().view(x.shape[0], -1))# Flatten lstm outx=self.fc1(x)# First Densereturnself.dnn(x)# Pass forward through fully connected DNN. 我们设置了2个可以自由地调优的参...
我们的目标是接收一个值序列,预测该序列中的下一个值。最简单的方法是使用自回归模型,我们将专注于使用LSTM来解决这个问题。 数据准备 让我们看一个时间序列样本。下图显示了2013年至2018年石油价格的一些数据。 这只是一个日期轴上单个数字序列的图。下表显示了这个时间序列的前10个条目。每天都有价格数据。 代码...
在本教程中,我们将使用PyTorch-LSTM进行深度学习时间序列预测。 我们的目标是接收一个值序列,预测该序列中的下一个值。最简单的方法是使用自回归模型,我们将专注于使用LSTM来解决这个问题。 完整文章: https://avoid.overfit.cn/post/3c8a4160c79041ed8d89b18738f65058 提供专业的人工智能知识,涉及领域包括CVNLP...
使用Python构建LSTM网络实现对时间序列的预测 1. LSTM网络神经元结构 LSTM网络 神经元结构示意图 在任一时刻t,LSTM网络神经元接收该时刻输入信息xt,输出此时刻的隐藏状态ht,而ht不仅取决于xt,还受到t−1时刻细胞状态 (cell state)ct−1和隐藏状态 (hidden state)ht−1的影响;图中水平贯穿神经元内部...
output_size:输出中的项目数,由于我们要预测未来1个月的乘客人数,因此输出大小为1。 接下来,在构造函数中,我们创建变量hidden_layer_size,lstm,linear,和hidden_cell。LSTM算法接受三个输入:先前的隐藏状态,先前的单元状态和当前输入。该hidden_cell变量包含先前的隐藏状态和单元状态。lstm和linear层变量用于创建LSTM和...
学习使用 LSTM 来预测时间序列,本文中使用上证指数的收盘价。 首先用 tushare 下载上证指数的K线数据,然后作标准化处理。 import numpy as np import tushare as ts data_close = ts.get_k_data('000001', start='2018-01-01', index=True)['close'].values # 获取上证指数从20180101开始的收盘价的np.ndar...
本案例使用真实的心电图 (ECG) 数据来检测患者心跳的异常情况。我们将一起构建一个 LSTM 自动编码器,使用来自单个心脏病患者的真实心电图数据对其进行训练,并将在新的样本中,使用训练好的模型对其进行预测分类为正常或异常来来检测异常心跳。 本案例主要围绕以下几大核心展开。
接下来,我们将数据集分为训练集和测试集。LSTM算法将在训练集上进行训练。然后将使用该模型对测试集进行预测。将预测结果与测试集中的实际值进行比较,以评估训练后模型的性能。 前132条记录将用于训练模型,后12条记录将用作测试集。以下脚本将数据分为训练集和测试集。
在我早些时候的文章中,我展示了如何运用Keras库并利用LSTM进行时间序列分析,以预测未来的股票价格。将使用PyTorch库,它是最常用的深度学习的Python库之一。 在你继续之前,假定你对Python编程语言有中级水平的熟练度,并且你已经安装了PyTorch库。此外,对基本的机器学习概念和深度学习概念的了解也会有所帮助。如果你还没...