2 PCA+SVM: 2.1 PCA 主成分分析(Principal Component Analysis, 简称PCA)是常用的一种降维方法. 算法步骤: 2.2 SVM介绍 支持向量机(Support Vector Machines, 简称SVM)是一种二类分类模型. 划分超平面为: 3 人脸识别步骤 将每张人脸图片(m,nm,n)读取并展开成(m×n,1m×n,1), 假设总有ll张图片, 所有排列...
训练 SVM 分类器一旦我们完成了降维,就开始分类了。首先,我们将训练 SVM 分类模型。我们使用 GridSearchCV,这是一个库函数,它是一种调整超参数的方法,它将系统地为网格中指定的算法参数的每个组合建立和评估模型,并在最佳估计量,参数在参数网格中给出:print("Fitting the classifier to the training set") param...
SVM是一种机器学习算法,用于分类和回归问题。在人脸识别中,SVM可以根据已知的人脸数据集进行训练,并通过学习人脸图像与其对应的标签之间的关系,来对未知的人脸进行分类。在结合PCA和SVM时,PCA被用于降维,以减少特征空间的维度,而SVM用于分类任务,以将人脸图像分为不同的类别。 3. PCA和SVM在人脸识别中的应用有哪些...
SVM是一个两类分类器, 而大多数实际分类问题都是多类分类问题, 那么就需要利用SVM这个二分类器去实现一个多类问题的分类。本文人脸识别程序中, 采用的是一对一的投票策略, 即在任意两类样本之间设计一个SVM分类器,分类为得票最多的类。 2 MATLAB工具软件 本文通过MATLAB工具软件, 对PC A-SVM人脸识别...
基于PCA和SVM的人脸识别 程序中采用的数据集是ORL人脸库,该人脸库共有400副人脸图像,40人,每人10幅,大小为112*92像素,同一个人的表情,姿势有少许变化。 程序的流程主要分为三部分,数据的预处理(PCA降维和规格化),数据的训练阶段,数据的识别阶段 数据的预处理的流程图如下:...
人脸识别是计算机视觉和图像模式识别领域的一个重要技术.主成分分析(PCA)是人脸图像特征提取的一个重要算法.而支持向量机(SVM)有适合处理小样本问题,高维数及泛化性能强等多方面的优点.文章将两者结合,先用PCA算法进行人脸图像特征提取,再用SVM进行分类识别.通过基于ORL人脸数据库的计算机仿真实验表明,该方法具有很好的...
摘要:基于PCA 和SVM提出了一种新的人脸分割法,将双眼、额头、鼻子、嘴等可以明显表征人脸的六类特征提取出来,舍弃双颊以及耳朵等特征量少的部位。融合上述人脸的特征识别结果,运用支持向量机的方法进行分类识别,实验结果表明,文章所提出的PCA与SVM融合的新的人脸分割方法能有效地对人脸进行分类,极大地提升识别率。
支持向量机支持向量机(SVM)是一种用于两组分类问题的有监督机器学习模型,在为每个类别提供一组带标签的训练数据后,他们能够对新的测试数据进行分类。 支持向量机基于最大化间隔的平面对数据进行分类,决策边界是直的。支持向量机是一种很好的图像分类算法,实验结果表明,支持向量机在经过3-4轮相关优化后,其搜索精度...
支持向量机(SupportVectorMachine,SVM)起源于统计学习理论,它研究如何构造学习机,实现模式分类问题。其基本思想是通过非线性变换将输入空间变换到一个高维空间,在高维空间求取最优线性分类面,以解决那些线性不可分的分类问题。而这种非线性变换是通过定义适当的内积函数(即核函数)来实现的。SVM技术中核函数及其参数的选取...
基于PCA与SVM的人脸识别技术基于PCA与SVM的人脸识别技术摘要人脸识别技术是一种以人脸特征为研究对象的生物特征识别技术。本论文基于主成分分析PCA和支持向量机SVM的人脸识别技术展开研究。首先介绍了人脸识别技术的背景和研究意义,然后详