第23卷 第9期2001年9月武 汉理工大学学报JOURNALOFWUHANUNIVERSITYOFTECHNOLOGYVol.23 No.9 Sep.2001文章编号:1000-2405(2001)09-0090-02关于亚正定矩阵朱金寿(武汉理工大学) 摘要: 证明了关于亚正定矩阵的两个结论:(1)n阶实正规矩阵A是亚正定矩阵的充分必要条件是A的所有特征值的实部均大于零。(2
亚 正 定 矩 阵 的 判 )( 别 Ξ )( 朱 莉 莉 ( 安徽机电学院 芜湖 2 4 1 0 0 0 ) )( 摘 要 给出实正规矩阵和一般实矩阵 成 为 亚 正 定 阵 的 一 些 充 要 条 件 。 这 些 条 件 提 供 了 判 别 矩阵是否是亚正定的一些有效方法 。 关键词 实矩阵 正规矩阵 亚正定阵 中图分...
亚正定矩阵的充要条件
(1)A 亚正定.(2)A +A c 正定.(3)对任意实n 元非零列向量X ,都有X c A X >0.(4)A 可逆且A -1亚正定.(5)对任意正实数k ,k A 亚正定.(6)对任意反对称实阵S ,A +S 亚正定.(7)对任意n 阶可逆实方阵P ,P c A P 亚正定.(8)A 的任何主子阵均为亚正定阵.定理2 (亚正定矩阵的...
为亚正定矩阵 命题 设 A= A11A12 A21A ;22 . 其中 A11 为 (1< 阶主子阵 . 若 (1DA12 A21/ 列满秩 (2DA22 亚正定 则 A 亚正定 GA11 亚正定 . 且 (A21 A12/D 2R -1 (A11D (A12 A/21D 2R -1 (A22D 的特征值大于 O 且小于 1 证明因 A 亚正定 GR(AD 正定 . 即 (A11 A11/...
矩阵的实正定矩阵的概念, 随后, Hom 等l2 ]提出了 实正定矩阵的定义, 李炯生【 3 对这类广义正定矩阵 的性质和特征做 了较深人 的研究 , 屠伯埙[4 提 出了 亚正定矩阵的概念 , 并对其做 了较系统的论证 与研 究-4I5J . 事实上, 实正定矩阵实际上就是亚正定矩 阵, 这两个概念是等价的-4 J , ...
耍]研究亚正定矩阵kronecker积的亚正定性,得到了一个充要条件。同时得到Hadamard积亚正 定性的一个充要条件+ [关键词]亚正定矩阵;特征值;Kronecker积;Hadamard积 [中田分类号]0151.21 [文献标识码]c [文章编号]1672—1454(2006)02—0112—03 1970年,C.R.Johnson在文[1]中提出了一般化的矩阵正定的概念,后来...
亚正定阵的两个充分条件及应用 维普资讯 http://www.cqvip.com
亚正定矩阵的加权广义范数及其性质
亚正定矩阵;实对称正定矩阵;特征值中图分类号:0151.21文献标志码:A0引言对于矩阵正定性的研究,研究人员过去一直局限于实对称矩阵和H erm i te矩阵.例如,1970年,J ohnson⋯引入了不再局限于实对称矩阵和H erm i te矩阵的实正定矩阵的概念,随后,H orn等【23提出了实正定矩阵的定义,李炯生[3】对这类广义正定...