自从GPT、EMLO、BERT的相继提出,以Pre-training + Fine-tuning的模式在诸多自然语言处理(NLP)任务中被广泛使用,其先在Pre-training阶段通过一个模型在大规模无监督语料上预先训练一个预训练语言模型(Pre-trained Language Model,PLM),然后在Fine-tuning阶段基于训练好的语言模型在具体的下游任务上再次进行微调(Fine-tu...
这几类任务基本可以涵盖现有的自然语言处理场景中,而这五类任务在Fine-tuning阶段几乎都涉及在模型头部引入新参数的情况,且都存在小样本场景过拟合的问题,因此Prompt-Tuning的引入非常关键。 第二章:Prompt-Tuning的定义 涉及知识点: 那么什么是Prompt呢?在了解预训练语言模型的基础,以及预训练语言模型在Pre-training和...
自从GPT、EMLO、BERT的相继提出,以Pre-training + Fine-tuning 的模式在诸多自然语言处理(NLP)任务中被广泛使用,其先在Pre-training阶段通过一个模型在大规模无监督语料上预先训练一个 预训练语言模型(Pre-trained Language Model,PLM) ,然后在Fine-tuning阶段基于训练好的语言模型在具体的下游任务上再次进行 微调(F...
iPET旨在先从预训练模型开始,初始化多个不同的模型(图中1步骤),在有标注的少量样本上进行Prompt-Tuning,然后通过多个不同的PVP训练得到多个不同的模型(图中a步骤),每个模型在无标注数据上进行推理打标,并根据置信度筛选(图中b步骤),根据新标注的数据与原始标注数据融合后,再重新进行Prompt-Tuning(图中c步骤),重复...