Evaluate:∫x1+cosxdx View Solution Evaluate∫x2x2−4dx View Solution Evaluate∫x31+x8dx View Solution ∫x(3x−5)4dx View Solution Evaluate:∫x2sinxdx View Solution Evaluate:∫xex2dx View Solution ∫x2secx3dx View Solution Exams
∫baf(x)dx=∫baf(a+b−x)dx. Step 1: Define the integralLet a=π4 and b=3π4. Then, we can express the integral as: I=∫3π4π4x1+sinxdx. Step 2: Apply the property of definite integralsUsing the property mentioned, we replace x with a+b−x: I=∫3π4π4(π4+3π4...
Evaluate \int \frac{\cos x}{(1+3 \sin x)^4} dx. Solve \int \int \int_E 4 \ yzdzdydx \ and \ E =(x, y, z): x \ge 0, y \ge 0, z \ge 0, x^2 +y^2 \le 1, x +z \le 2 Solve \int \frac{\sin{(2x){\sqrt{4cosx -1 Solve it and explai...
(x+1)dx=∫1/√(x+1)d(x+1) =2√(x+1)+C (C是积分常数)7、∫(3x-2)2dx=∫(9x2-6x+4)dx =3x3-3x2+4x+C (C是积分常数)8、∫xsinxdx=-xcosx+∫cosxdx =-xcosx+sinx+C (C是积分常数)9、∫1/√(1-2x)dx=-1/2∫1/√(1-2x)d(1-2x) =-√(1-2x)+C (...
Answer to: Integrate (a) \int sinxdx (b) \int sin^{2}xdx (c) \int sinxcosxdx (d) \int sin^{3}dx By signing up, you'll get thousands of step-by-step...
∫(√x+lnx)/xdx=∫(√x+(lnx)/x)dx=2/3x^3+∫lnxd(lnx) =2/3x^(3/2)+1/2(lnx)^2+C 。 3 ∫xcosxdx=∫xd(sinx)=x⋅sinx-∫sinxdx=x⋅sinx+cosx+C 4. ∫x⋅e^(-x)dx=-∫x⋅d(e^(-x))=-x⋅e^(-x)+∫e^(-x)dx =-x⋅e^(-x)-e^(-x)+C . ...
Use the Comparison Theorem to determine whether the following integral is convergent or divergent. \int_{0}^{\pi }\frac{\sin ^{2}x}{\sqrt[4]{x^{3}dx Use the Comparison Theorem to determine whether the following integral is...
Step by step video & image solution for The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . . by Maths experts to help you in doubts & scoring excellent marks in Class 12 exams. Updated on:21/07/2023 Class 12MATHSDEFINITE INTEGRAL ...
Then we integrate the given function and substitute back the u value Formulas Used {eq}\displaystyle \begin{align} \int a\cdot f\left(x\right)dx&=a\cdot \int f\left(x\right)dx\\ \int xe^xdx&=xe^x-e^x \end{align} {/eq} ...
what is the value of { \frac{ (cos(sinx) - cosx)}{x^4} ,as, x \to 0 } What is the value of \frac {d}{dx} [ f^-1(x)] when x = 2 given that f(x)= 2-x^2 and f^-1(2)=0 A. Solve. \int \int \int_R \frac{z}{x^2 + z^2}dV, where R = \{(x, y,...