以\(\left(0,\dfrac{a}{2}\right)\)为圆心,\(\dfrac{a}{2}\)为半径的圆 如果没有记住它的图形,不妨化为直角坐标方程.\(\rho =a \sin \theta\),\(\rho ^{2}= \rho a \sin \theta\),\(x^{2}+y^{2}=ay\),\(x^{2}+\left(y-\dfrac{a}{2}\right)^{2}=\dfrac{a^{2...
\rho =a(1+cos\theta ),\rho '=-a\sin\theta S=\int_{0}^{2\pi} {\root \of {\rho ^2+(\rho ')^2} }\,{\rm d\theta }=\int_{0}^{2\pi} {2a\root\of {\cos^2\frac{\theta }{2}} }\,{\rm d\theta }=\int_{0}^{\pi} {2a\cos\frac{\theta }{2}\,{\rm d...
$(1)$极坐标方程分别为$\rho =2\cos \theta $和$\rho =\sin \theta $的两个圆的圆心距为___;$(2)$如果关于$x$的不等式$|x-3|-|x-4| \lt a$的解集不是空集,则实数$a$的取值范围是___;$(3)$如图,$AD$是$\odot O$的切线,$AC$是$\odot O$的弦,过$C$作$AD$的垂线,垂足为...
曲线\rho =\sin \theta 与\rho =\cos \theta \left( \rho >0,0\leqslant \theta \leqslant \dfrac{ \pi }{2} \right)分别化为{{\rho }^{2}}=\rho \sin \theta ,{{\rho }^{2}}=\rho \cos \theta .可得直角坐标方程为:{{x}^{2}}+{{y}^{2}}=y,{{x}^{2}}+{{y}^{2}}...
只要使用一些简单的代数来找出y与x的关系。取某个范围为x:
圆的极坐标方程分别是\rho = 2\cos \theta 和\rho = 4\sin \theta ,两个圆的圆心距离是( )A.2B.\sqrt{2}C.\sqrt
(\theta\), of the wave vectors at the same time point as B and C. Arrows represent the direction of wave vectors. (E) The colormap of the magnitude of a local change (gradient) in the directions of the wave vectors. Regions of high gradient are located at the edges of wave domains...
下列弧微分公式不正确的是 A 曲线 \cases { x = \rho ( \theta ) \cos \theta y = \rho ( \theta ) \sin \theta } 的弧微分 ds = \sqrt { \rho ^ 2 ( \theta ) + \rho ^ { ' 2 } ( \theta ) } d \theta B 曲线 y = f ( x ) 的弧微分 ds = \sqrt { ( dx ) ^ 2 ...
使用(rho,theta)在图像上绘制一条白线是指在极坐标系下,通过给定的(rho,theta)参数,在图像上绘制一条直线,直线的颜色为白色。 具体步骤如下: 1. 将图像转换为灰度图像,以便进行边...
11){\rho}=\sqrt{9}{\sin}{\theta};(12)y=\frac{3x^{2}+2x-\sqrt{x}+1}{\sqrt{x}}; 相关知识点: 试题来源: 解析 极坐标方程转换为直角坐标方程: 直角坐标方程转换为极坐标方程: **解析:** 1. **极坐标方程转换为直角坐标方程:** 利用极坐标与直角坐标之间的转换关系: 和,将极...